Summary

The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Entries
Topic Review
PC-12 Cell Line
PC-12 cells have been widely used as a neuronal line study model in many biosensing devices, mainly due to the neurogenic characteristics acquired after differentiation, such as high level of secreted neurotransmitter, neuron morphology characterized by neurite outgrowth, and expression of ion and neurotransmitter receptors. 
  • 2.6K
  • 18 Jul 2022
Topic Review
South African Medicinal Plants in Metabolic Disorders Management
Metabolic syndrome (MetS) is a prevalent, multifactorial and complex disease that is associated with an increased risk of developing diabetes and other major cardiovascular complications. The rise in the global prevalence of MetS has been attributed to genetic, epigenetic, and environmental factors. The adoption of sedentary lifestyles that are characterized by low physical activity and the consumption of high-energy diets contributes to MetS development. Current management criteria for MetS risk factors involve changes in lifestyle and the use of pharmacological agents that target specific biochemical pathways involved in the metabolism of nutrients. Pharmaceutical drugs are usually expensive and are associated with several undesirable side effects. Alternative management strategies of MetS risk factors involve the use of medicinal plants that are considered to have multiple therapeutic targets and are easily accessible. Medicinal plants contain several different biologically active compounds that provide health benefits.
  • 1.4K
  • 18 Jul 2022
Topic Review
Monomers and Oligomers of Arrestin Proteins
Three out of four subtypes of arrestin proteins expressed in mammals self-associate, each forming oligomers of a distinct kind. Monomers and oligomers have different subcellular localization and distinct biological functions. Visual arrestin (a.k.a. S-antigen, 48 kDa protein, and rod arrestin; systematic name arrestin-1) is expressed in rod and cone photoreceptor cells in the retina, whereas arrestin-4 is expressed exclusively in cones at a much lower level than arrestin-1.
  • 944
  • 18 Jul 2022
Topic Review
Liver Metastatic Breast Cancer
The median overall survival of patients with metastatic breast cancer is only 2–3 years, and for patients with untreated liver metastasis, it is as short as 4–8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
  • 1.9K
  • 22 Jul 2022
Topic Review
Adiponectin System (Rescue Hormone)
The adipose tissue, regardless of its role in generating and storing energy, acts as a key player as an endocrine tissue, producing a wide scale of cytokines/hormones called adipokines. Adipokines such as leptin, resistin, visfatin and osteopontin own pro-inflammatory effects on the cardiovascular system in some cases. In contrast, some adipokines have cardioprotective and anti-inflammatory impacts including adiponectin, omentin, and apelin.
  • 1.3K
  • 12 Jul 2022
Topic Review
Chitosan-Based Materials and Devices
Chitosan is one of the most studied polysaccharides in recent decades for its biomedical application. This polymer is derived from chitin, the main component in the exoskeleton of insects and crustaceans, a homopolymer consisting of β-(1→4)-N-acetyl-D-glucosamine. The degree of deacetylation of chitosan depends on the conditions applied during the deacetylation process—such as temperature or sodium hydroxide concentration—and determines various properties of the polymer, such as pKa, solubility, and viscosity. Chitosan has been used in a broad assortment of medical materials and devices. Each system benefits from the properties that chitosan can provide for surgical applications. The shape, porosity, consistency, and size of the fabricated systems can be precisely tuned for the intended application.
  • 1.2K
  • 11 Jul 2022
Topic Review
Electrochemical Glucose Sensors Based on 2D Materials
Diabetes is a health disorder that necessitates constant blood glucose monitoring. The industry is always interested in creating novel glucose sensor devices because of the great demand for low-cost, quick, and precise means of monitoring blood glucose levels. Electrochemical glucose sensors, among others, have been developed and are now frequently used in clinical research. Nonetheless, despite the substantial obstacles, these electrochemical glucose sensors face numerous challenges. Because of their excellent stability, vast surface area, and low cost, various types of 2D materials have been employed to produce enzymatic and nonenzymatic glucose sensing applications. 
  • 1.9K
  • 11 Jul 2022
Topic Review
Nutritional Imbalance in Mechanically Ventilated Multiple Trauma Patients
The critically ill polytrauma patient is characterized by a series of metabolic changes induced by inflammation, oxidative stress, sepsis, and primary trauma, as well as associated secondary injuries associated. Metabolic and nutritional dysfunction in the critically ill patient is a complex series of imbalances of biochemical and genetic pathways, as well as the interconnection between them. Therefore, the equation changes in comparison to other critical patients or to healthy individuals, in which cases, mathematical equations can be successfully used to predict the energy requirements. Recent studies have shown that indirect calorimetry is one of the most accurate methods for determining the energy requirements in intubated and mechanically ventilated patients. Current research is oriented towards an individualized therapy depending on the energy consumption (kcal/day) of each patient that also takes into account the clinical dynamics. By using indirect calorimetry, one can measure, in real time, both oxygen consumption and carbon dioxide production. Energy requirements (kcal/day) and the respiratory quotient (RQ) can be determined in real time by integrating these dynamic parameters into electronic algorithms. In this manner, nutritional therapy becomes personalized and caters to the patients’ individual needs, helping patients receive the energy substrates they need at each clinically specific time of treatment.
  • 881
  • 11 Jul 2022
Topic Review
MicroRNA Expression in Sepsis
A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status.
  • 1.0K
  • 11 Jul 2022
Topic Review
Ferroptosis Modulation as Therapeutic Target for Glioblastoma Treatment
Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients’ low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients.
  • 893
  • 08 Jul 2022
  • Page
  • of
  • 65
>>