Summary

The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Entries
Topic Review
Chitosan Nanostructures
Chitosan (CS) is a natural polymer with a positive charge, a deacetylated derivative of chitin. Chitosan nanostructures (nano-CS) have received increasing interest due to their potential applications and remarkable properties. 
  • 1.4K
  • 04 Nov 2021
Topic Review
Medication for Macular Degeneration
Age-related macular degeneration (AMD) is central vision loss with aging, was the fourth main cause of blindness in 2015, and has many risk factors, such as cataract surgery, cigarette smoking, family history, hypertension, obesity, long-term smart device usage, etc. In general, AMD drug candidates from natural products are more effective at treating early and intermediate AMD.
  • 1.0K
  • 05 Nov 2021
Topic Review
Antimicrobial Activity of Gemini Surfactants
Gemini cationic surfactants (GS) are constructed from two alkylammonium monomeric salts linked by a spacer.They exhibit significant surface, aggregation and antimicrobial properties. Due to the fact that, in order to achieve the desired utility effect, the minimal concentration of compounds are used, they are in line with the principle of greenolution (green evolution) in chemistry. The obtained results indicate that the synthesized compounds are effective microbicides with a broad spectrum of biocidal activity and are active against Escherichia coli, Staphylococcus aureus, yeast Candida albicans, molds Aspergillus niger and Penicillium chrysogenum. These compounds constitute a new, interesting class of microbicides with a broad spectrum of biocidal activity.
  • 1.3K
  • 28 Jan 2022
Topic Review
Umbilical Cord-Derived Wharton’s Jelly in Orthopedic Regenerative Medicine
Wharton’s jelly (WJ) is an allogenic tissue comprised of connective tissue located within the umbilical cord. Wharton’s jelly resists torsional and compressive stresses during fetal development levied upon the umbilical vessels. The primitive mesenchymal stem cells reside within the UC-derived WJ [15]. These perinatal MSCs resemble embryonic stem cells (ESCs) but exhibit many properties of adult MSCs. Wharton’s jelly-derived mesenchymal stem cells (WJSCs) exhibit lower expression levels of pluripotent markers compared to ESCs, indicating multipotency rather than pluripotency [16,17]. Wharton’s jelly contains the highest concentration of MSCs/mL compared to other tissue types.
  • 1.3K
  • 08 Nov 2021
Topic Review
Rhus trilobata Nutt. (Anacardiaceae)
Rhus trilobata (RHTR) is a medicinal plant with cytotoxic activity in different cancer cell lines. However, the active compounds in this plant against ovarian cancer are unknown. In this study, we aimed to evaluate the antineoplastic activity of RHTR and identify its active metabolites against ovarian cancer. The aqueous extract (AE) and an active fraction (AF02) purified on C18-cartridges/ethyl acetate decreased the viability of SKOV-3 cells at 50 and 38 μg/mL, respectively, compared with CHO-K1 (> 50 μg/mL) in MTT assays and generated changes in the cell morphology with apoptosis induction in Hemacolor® and TUNEL assays (p ≤ 0.05, ANOVA). The metabolite profile of AF02 showed a higher abundance of flavonoid and lipid compounds compared with AE by UPLC-MS. Gallic acid and myricetin were the most active compounds in RHTR against SKOV-3 cells at 50 and 166 μg/mL, respectively (p ≤ 0.05, ANOVA). Antineoplastic studies in Nu/Nu female mice with subcutaneous SKOV-3 cells xenotransplant revealed that 200 mg/kg/i.p. of AE and AF02 inhibited ovarian tumor lesions from 37.6% to 49% after 28 days (p ≤ 0.05, ANOVA). In conclusion, RHTR has antineoplastic activity against ovarian cancer through a cytostatic effect related to gallic acid and myricetin. Therefore, RHTR could be a complementary treatment for this pathology.
  • 1.3K
  • 05 Nov 2021
Topic Review
Green Synthesis of Gold Nanoparticles (AuNPs) from Plants
Gold nanoparticles (AuNPs) are becoming promising cancer therapeutic and diagnostic metal NPs that attract researchers due to their unique physiochemical properties such as stability, biocompatibility, high thermal activity, optical, electrical, high surface area to volume ratio surface chemistry, and multifunctionalization, etc. By fine tuning the components and concentrations, AuNPs can be easily manufactured into various forms and sizes. AuNPs have also shown significant advancement in treating inflammatory diseases and bacterial infections.
  • 2.2K
  • 02 Nov 2021
Topic Review
Tyrp1 Mutant Variants and OCA3
Oculocutaneous albinism type 3 (OCA3) is an autosomal recessive disorder caused by mutations in the TYRP1 gene. Tyrosinase-related protein 1 (Tyrp1) is involved in eumelanin synthesis, catalyzing the oxidation of 5,6-dihydroxyindole-2-carboxylic acid oxidase (DHICA) to 5,6-indolequinone-2-carboxylic acid (IQCA).
  • 1.4K
  • 29 Oct 2021
Topic Review
Chitosan Composites
This topic discusses the properties of chitosan, which is synthesized from the biopolymer named chitin. Chitin is available in nature in abundance. Chitosan is a biodegradable polymer with other biological properties like antioxidant and antimicrobial properties. The polymer and its derivatives are nonimmunogenic and noninflammatory. Due to their advantages, these polymers have received much attention in the food and pharmaceutical industries. In the present topic, the sources of chitosan and their properties will be discussed in brief.
  • 1.9K
  • 29 Oct 2021
Topic Review
Hydroxyapatite Nanoparticles in Drug Delivery
A biomaterial is a synthetic material used to replace part of a living system or a material meant to be in contact with living tissue. In this sense, biomaterials can be categorized into polymers, liposomes, micelles, dendrimers, and calcium phosphate (CaP) nanoparticles, where each will show a different type of bioactivity. Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. HAP nanoparticles have been used as vehicles for delivery due to their affinity to DNA, proteins, several drugs, and proper release activity.
  • 1.5K
  • 02 Nov 2021
Topic Review
Serotonin-Norepinephrine Reuptake Inhibitors
Serotonin-norepinephrine reuptake inhibitors (SNRIs) are among the most commonly prescribed medications in the United States annually. As their name suggests, the principle mechanism of action is the inhibition of presynaptic neuronal uptake of 5-HT (serotonin) and norepinephrine following release from the synaptic cleft.
  • 1.4K
  • 28 Oct 2021
  • Page
  • of
  • 65
>>