You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Cognitive Dysfunction in Long COVID
Edit

Cognitive dysfunction in Long COVID refers to the persistence of neurocognitive symptoms such as memory deficits, attention impairment, executive dysfunction, and slowed information processing that continue for weeks or months after acute SARS-CoV-2 infection. These symptoms, commonly termed “brain fog,” are among the most disabling features of post-acute sequelae of COVID-19 (PASC) and occur even in individuals with mild initial disease. The underlying mechanisms involve chronic neuroinflammation, blood–brain barrier disruption, endothelial dysfunction, and neuroendocrine imbalance.

Long Covid Cognitive Dysfunction

1. Introduction

Cognitive dysfunction is one of the most common and debilitating features of Long COVID, a syndrome that affects individuals for weeks or months after recovering from acute SARS-CoV-2 infection. Patients often describe their symptoms as “brain fog,” encompassing difficulties with memory, attention, executive function, and mental clarity. These impairments can occur even in individuals who experienced mild or asymptomatic COVID-19 and may persist long after respiratory symptoms resolve [1][2][3].

The underlying mechanisms of Long COVID-related cognitive impairment remain incompletely understood but appear to involve a convergence of neuroinflammatory, vascular, metabolic, and neuroendocrine pathways. This entry synthesizes current evidence on the molecular and cellular mechanisms implicated in post-COVID cognitive dysfunction.

2. Clinical and Neuropsychological Profile

Cognitive symptoms in Long COVID range from subtle attention deficits to severe executive dysfunction and memory loss. Objective testing using validated tools such as the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), and Symbol Digit Modalities Test (SDMT) has revealed persistent deficits months after infection [4][5][6]. Meta-analyses suggest that up to 25% of individuals report cognitive symptoms 3–12 months post-infection [7][8], with longitudinal studies confirming worsening or persistence over time [9].

In addition to cognitive symptoms, patients often experience neuropsychiatric manifestations such as depression, anxiety, irritability, and insomnia. However, studies indicate that cognitive deficits often persist independently of mood disorders, supporting a distinct neurobiological substrate [10][11].

3. Neuroinflammation and Glial Activation

Neuroinflammation is a central mechanism in Long COVID cognitive dysfunction. SARS-CoV-2 infection triggers a systemic cytokine response that can extend to the CNS via a compromised blood–brain barrier (BBB) or direct viral neuroinvasion. The release of proinflammatory cytokines, including IL-6, TNF-α, and IL-1β, activates microglial cells, leading to chronic low-grade inflammation within the brain [12][13].

Microglial activation promotes synaptic pruning, oxidative stress, and the release of neurotoxic substances such as nitric oxide and reactive oxygen species (ROS). Astrocytes contribute further to this neurotoxicity by releasing glutamate and cytokines, exacerbating neuronal dysfunction [14][15]. The NLRP3 inflammasome, an intracellular complex, plays a key role in amplifying inflammation by activating caspase-1 and promoting the release of IL-1β and IL-18 [13][16].

4. Blood–Brain Barrier Disruption and Endothelial Dysfunction

The BBB is a highly selective interface between the peripheral circulation and the CNS. Disruption of the BBB during and after SARS-CoV-2 infection allows peripheral immune cells, cytokines, and neurotoxins to infiltrate the CNS, promoting inflammation and neuronal injury [17][18]. The virus can directly infect endothelial cells via ACE2 and neuropilin-1 (NRP1) receptors, disrupting VEGF-A–mediated signaling and promoting vascular permeability [19][20][21][22].

BBB disruption has been confirmed in imaging and cerebrospinal fluid (CSF) studies in Long COVID patients, with findings including elevated S100B, increased albumin index, and radiological evidence of microvascular pathology [18][23]. These abnormalities correlate with neurocognitive symptoms and glial markers such as GFAP and NFL.

5. Cerebral Microvascular Injury and Thrombosis

SARS-CoV-2-induced endothelial injury contributes to cerebral microvascular thrombosis and impaired cerebral perfusion. Endothelial cells express adhesion molecules (ICAM-1, VCAM-1) that promote leukocyte adhesion and platelet aggregation. This pro-thrombotic state leads to microclots, particularly in metabolically active brain regions like the hippocampus and prefrontal cortex [24][25][26].

Persistent hypercoagulability has been documented in Long COVID, with elevated D-dimer and fibrinogen levels months after infection. These microvascular alterations may not be visible on conventional MRI but are associated with ischemia, mitochondrial fragmentation, and neuronal apoptosis [27][28].

6. Neuroendocrine Dysregulation and Autonomic Dysfunction

Long COVID is also characterized by alterations in the hypothalamic–pituitary–adrenal (HPA) axis and autonomic nervous system (ANS). Patients frequently exhibit hypocortisolism, suggesting central suppression of HPA function, which may result from hypothalamic inflammation or impaired pituitary feedback [29][30][31][32]. Low cortisol levels contribute to fatigue, mood changes, and cognitive decline [33].

Dysautonomia, including postural orthostatic tachycardia syndrome (POTS), orthostatic intolerance, and palpitations, has been widely reported [34][35]. Reduced vagal tone impairs the cholinergic anti-inflammatory reflex, exacerbating systemic inflammation and cognitive symptoms. Heart rate variability (HRV) has emerged as a surrogate marker of vagal activity and a predictor of cognitive risk in Long COVID [36][37].

7. Molecular Signatures and Biomarkers

Several molecular biomarkers have been associated with Long COVID cognitive dysfunction:

- Cytokines: IL-6, IL-1β, TNF-α [12][16][38]
- Glial injury markers: GFAP, LGALS3 (galectin-3), S100B [39][12][40][18]
- Axonal damage: NFL (neurofilament light chain) [11][41]
- MicroRNAs: miR-146a and miR-155 modulate NF-κB signaling and glial reactivity; miR-24 regulates BBB integrity via NRP1 suppression [12][42][43]
- Endothelial markers: ICAM-1, VCAM-1, VEGF-A [18][23]
- Neuroendocrine markers: Cortisol, serotonin, dopamine [44][45][29]

These biomarkers are useful for identifying disease severity, monitoring recovery, and guiding treatment strategies.

8. Overlap with Neurodegenerative Disorders

Long COVID exhibits striking pathophysiological parallels with Alzheimer’s disease (AD), including chronic neuroinflammation, tau hyperphosphorylation, mitochondrial dysfunction, and BBB disruption [12][40][46]. Transcriptomic analyses show upregulation of genes such as FKBP5, LGALS3, and KLF4 in both conditions, indicating overlapping neurodegenerative cascades [47][48].

Experimental models have confirmed that SARS-CoV-2 can induce astrogliosis, tauopathy, and hippocampal neurogenesis suppression, even in the absence of viral RNA in brain tissue [49][50][51]. These findings suggest that Long COVID may accelerate neurodegenerative processes, particularly in genetically predisposed individuals (e.g., APOE ε4 carriers) [52][53].

9. Therapeutic Strategies

Several therapeutic strategies are under investigation:

- Anti-cytokine therapies: IL-6 receptor antagonists (e.g., tocilizumab) and TNF-α inhibitors (e.g., infliximab) may reduce neuroinflammation [54][55].
- Antioxidant and neuroprotective compounds: Nutraceuticals such as resveratrol, curcumin, and green tea polyphenols activate NRF2, PPARγ, and AMPK signaling, improving mitochondrial function and reducing oxidative stress [56][48][57][50][58].
- Supportive therapies: Cortisol supplementation and magnesium correction may alleviate neuroendocrine dysfunction and improve fatigue and cognition [29][59].

Targeting the NRF2/PPARγ–NF-κB axis may represent a dual-acting strategy to suppress glial activation and enhance resilience to oxidative damage.

10. Conclusion

Cognitive dysfunction in Long COVID is driven by a multifaceted interplay of neuroinflammation, BBB and vascular injury, endothelial dysfunction, and neuroendocrine imbalance. These processes are reflected in specific molecular profiles, many of which overlap with known neurodegenerative conditions. The identification of biomarkers such as IL-6, TNF-α, GFAP, NFL, and miR-146a offers new tools for diagnosis and stratification.

Future research should focus on longitudinal biomarker profiling, advanced neuroimaging, and mechanistic studies to clarify disease trajectories and identify effective interventions. Integrative, personalized approaches will be essential for managing and potentially reversing cognitive impairment in Long COVID.

References

  1. World Health Organization (WHO). Post-COVID-19 Condition. Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-COVID-19-condition (accessed on 15 February 2025).
  2. Brown, D.A.; O’Brien, K.K. Conceptualising Long COVID as an episodic health condition. BMJ Glob. Health 2021, 6, e007004.
  3. Aljadah, M.; Khan, N.; Beyer, A.M.; Chen, Y.; Blanker, A.; Widlansky, M.E. Clinical Implications of COVID-19-Related Endothelial Dysfunction. JACC Adv. 2024, 3, 101070.
  4. Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. eClinicalMedicine 2021, 38, 101019.
  5. Damiano, R.F.; Caruso, M.J.G.; Cincoto, A.V.; Rocca, C.C.d.A.; Serafim, A.d.P.; Bacchi, P.; Guedes, B.F.; Brunoni, A.R.; Pan, P.M.; Nitrini, R.; et al. Post-COVID-19 psychiatric and cognitive morbidity: Preliminary findings from a Brazilian cohort study. Gen. Hosp. Psychiatry 2022, 75, 38–45.
  6. Del Brutto, O.H.; Wu, S.; Mera, R.M.; Costa, A.F.; Recalde, B.Y.; Issa, N.P. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: A longitudinal prospective study nested to a population cohort. Eur. J. Neurol. 2021, 28, 3245–3253.
  7. Panagea, E.; Messinis, L.; Petri, M.C.; Liampas, I.; Anyfantis, E.; Nasios, G.; Patrikelis, P.; Kosmidis, M. Neurocognitive Impairment in Long COVID: A Systematic Review. Arch. Clin. Neuropsychol. 2025, 40, 125–149.
  8. O’Mahoney, L.L.; Routen, A.; Gillies, C.; Jenkins, S.A.; Almaqhawi, A.; Ayoubkhani, D.; Banerjee, A.; Brightling, C.; Calvert, M.; Cassambai, S.; et al. The Risk of Long COVID Symptoms: A Systematic Review and Meta-Analysis of Controlled Studies. Nat. Commun. 2025, 16, 4249.
  9. Cysique, L.A.; Jakabek, D.; Bracken, S.G.; Allen-Davidian, Y.; Heng, B.; Chow, S.; Dehhaghi, M.; Pires, A.S.; Darley, D.R.; Byrne, A.; et al. The Kynurenine Pathway Relates to Post-Acute COVID-19 Objective Cognitive Impairment and PASC. Ann. Clin. Transl. Neurol. 2023, 10, 1338–1352.
  10. Popa, E.; Tetia, T.; Poroch, M.; Ungureanu, M.; Cosmescu, A.; Barbacariu, L.; Slanina, A.M.; Bacusca, A.; Petroae, A.; Novac, O.; et al. The Effects of the COVID-19 Pandemic on Mental Health: A Web-Based Study Among Romanian Adults. Cureus 2022, 14, e31331.
  11. Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Persistent Psychopathology and Neurocognitive Impairment in COVID-19 Survivors: Effect of Inflammatory Biomarkers at Three-Month Follow-Up. Brain Behav. Immun. 2021, 94, 138–147.
  12. Constantinescu-Bercu, A.; Lobiuc, A.; Căliman-Sturdza, O.A.; Oiţă, R.C.; Iavorschi, M.; Pavăl, N.-E.; Șoldănescu, I.; Dimian, M.; Covasa, M. Long COVID: Molecular Mechanisms and Detection Techniques. Int. J. Mol. Sci. 2024, 25, 408.
  13. Freeman, T.L.; Swartz, T.H. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front. Immunol. 2020, 11, 1518.
  14. Luo, E.Y.; Chang, R.C.-C.; Gilbert-Jaramillo, J. SARS-CoV-2 Infection in Microglia and Its Sequelae: What Do We Know So Far? Brain Behav. Immun. Health 2024, 12, 100888.
  15. Yang, A.C.; Kern, F.; Losada, P.M.; Agam, M.; Maat, C.A.; Schmartz, G.P.; Wyss-Coray, T. Dysregulation of Brain and Choroid Plexus Cell Types in Severe COVID-19. Nature 2021, 595, 565–571.
  16. Potere, N.; Del Buono, M.G.; Caricchio, R.; Cremer, P.C.; Vecchié, A.; Porreca, E.; Dalla Gasperina, D.; Dentali, F.; Abbate, A.; Bonaventura, A. Interleukin-1 and the NLRP3 Inflammasome in COVID-19: Pathogenetic and Therapeutic Implications. EBioMedicine 2022, 85, 104299.
  17. DeOre, B.J.; Tran, K.A.; Andrews, A.M.; Ramirez, S.H.; Galie, P.A. SARS-CoV-2 Spike Protein Disrupts Blood–Brain Barrier Integrity via RhoA Activation. J. Neuroimmune Pharmacol. 2021, 16, 722–728.
  18. Greene, C.; Connolly, R.; Brennan, D.; Farrell, R.; O’Sullivan, M.; Kelly, Á.; Doyle, S.L.; O’Halloran, K.D.; Mills, K.H.G.; Campbell, M.; et al. Blood-Brain Barrier Disruption and Sustained Systemic Inflammation in Individuals with Long COVID-Associated Cognitive Impairment. Nat. Neurosci. 2024, 27, 421–432.
  19. Gudowska-Sawczuk, M.; Mroczko, B. The Role of Neuropilin-1 (NRP-1) in SARS-CoV-2 Infection: Review. J. Clin. Med. 2021, 10, 2772.
  20. Moutal, A.; Martin, L.F.; Boinon, L.; Gomez, K.; Ran, D.; Zhou, Y.; Stratton, H.J.; Cai, S.; Luo, S.; Gonzalez, K.B.; et al. SARS-CoV-2 Spike Protein Co-Opts VEGF-A/Neuropilin-1 Receptor Signaling to Induce Analgesia. Pain 2021, 162, 243–252.
  21. Saleki, K.; Alijanizadeh, P.; Azadmehr, A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19. Biomed. Pharmacother. 2023, 167, 115558.
  22. Mone, P.; de Donato, A.; Varzideh, F.; Jankauskas, S.; Kansakar, U.; Santulli, G. Functional Role of miR-34a in Diabetes and Frailty. Front. Aging 2022, 3, 949924.
  23. Yang, R.C.; Huang, K.; Zhang, H.P.; Li, L.; Zhang, Y.-F.; Tan, C.; Chen, H.-C.; Jin, M.-L.; Wang, X.-R. SARS-CoV-2 Productively Infects Human Brain Microvascular Endothelial Cells. J. Neuroinflamm. 2022, 19, 149.
  24. Butowt, R.; von Bartheld, C.S. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist 2021, 27, 582–603.
  25. Birnhuber, A.; Fließer, E.; Gorkiewicz, G.; Zacharias, M.; Seeliger, B.; David, S.; Welte, T.; Schmidt, M.; Olschewski, H.; Kwapiszewska, G.; et al. Between Inflammation and Thrombosis: Endothelial Cells in COVID-19. Eur. Respir. J. 2021, 58, 2100377.
  26. Spudich, S.; Nath, A. Nervous System Consequences of COVID-19. Science 2022, 375, 267–269.
  27. Fekete, M.; Lehoczki, A.; Szappanos, Á.; Toth, A.; Mahdi, M.; Sótonyi, P.; Benyó, Z.; Yabluchanskiy, A.; Tarantini, S.; Ungvari, Z. Cerebromicrovascular Mechanisms Contributing to Long COVID: Implications for Neurocognitive Health. GeroScience 2025, 47, 745–779.
  28. Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; DiBiase, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U.; et al. Persistent Neurologic Symptoms and Cognitive Dysfunction in Non-Hospitalized COVID-19 “Long Haulers”. Ann. Clin. Transl. Neurol. 2021, 8, 1073–1085.
  29. Yavropoulou, M.P.; Tsokos, G.C.; Chrousos, G.P.; Sfikakis, P.P. Protracted stress-induced hypocortisolemia may account for the clinical and immune manifestations of Long COVID. Clin. Immunol. 2022, 245, 109133.
  30. Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae. Cell 2022, 185, 881–895.e20.
  31. Koch, C.A. Long COVID: Hormone Imbalances and/or Rather Complex Immune Dysregulations? J. Endocr. Soc. 2024, 8, bvae043.
  32. Sypniewski, D.; Matyjek, M.; Dobrowolska, A.; Sypniewska, G. The Importance of Hypocortisolemia in Long COVID–New Lessons from ME/CFS. Endocr. Metab. Immune Disord. Drug Targets 2024, 92, 13–22.
  33. Bansal, R.; Gubbi, S.; Koch, C.A. COVID-19 and chronic fatigue syndrome: An endocrine perspective. J. Clin. Transl. Endocrinol. 2022, 27, 100284.
  34. Tanking, C.; Lakkananurak, C.; Srisakvarakul, C.; Jitpreeda, A.; Threechod, K.; Sukitpunyaroj, D. Postural Orthostatic Tachycardia Syndrome and Other Autonomic Dysfunctions Following COVID-19: Incidence, Characteristics, and Associated Factors. J. Arrhythmia 2024, 40, e13001.
  35. Fanciulli, A.; Leys, F.; Krbot Skorić, M.; Reis Carneiro, D.; Calandra-Buonaura, G.; Camaradou, J.; Chiaro, G.; Cortelli, P.; Falup-Pecurariu, C.; Granata, R.; et al. Impact of the COVID-19 pandemic on clinical autonomic practice in Europe: A survey of the European Academy of Neurology and the European Federation of Autonomic Societies. Eur. J. Neurol. 2023, 30, 1712–1726.
  36. Castro, R.R.T.; Medeiros, C.A.M.; Ferreira, L.D.B.; de Souza, C.F.; de Oliveira, L.C.; Leite, J.R. Impact of COVID-19 on heart rate variability in post-COVID individuals compared to a control group. Sci. Rep. 2024, 14, 9067.
  37. Shah, B.; Kunal, S.; Bansal, A.; Jain, J.; Poundrik, S.; Shetty, M.K.; Batra, V.; Chaturvedi, V.; Yusuf, J.; Mukhopadhyay, S.; et al. Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence. Indian Pacing Electrophysiol. J. 2022, 22, 4–11.
  38. Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savović, J.; Tierney, J.; Baron, G.; Benbenishty, J.; et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518.
  39. Raza, M.L.; Imam, M.H.; Zehra, W.; Jamil, S. Neuro-Inflammatory Pathways in COVID-19-Induced Central Nervous System Injury: Implications for Prevention and Treatment Strategies. Exp. Neurol. 2024, 382, 114984.
  40. Jafari Khaljiri, H.; Jamalkhah, M.; Amini Harandi, A.; Pakdaman, H.; Moradi, M.; Mowla, A. Comprehensive Review on Neuro-COVID-19 Pathophysiology and Clinical Consequences. Neurotox. Res. 2021, 39, 1613–1629.
  41. Sudo, F.K.; Pinto, T.P.; Oliveira, M.F.; Yamamoto, F.I.; Lopes, M.A.; Medeiros, M.M.; Tavares, J.G.P.; Nitrini, R.; Smid, J.; Grinberg, L.T.; et al. Cognitive, Behavioral, Neuroimaging and Inflammatory Biomarkers after Hospitalization for COVID-19 in Brazil. Brain Behav. Immun. 2024, 115, 434–447.
  42. Evers, P.; Uguccioni, S.M.; Ahmed, N.; Francis, M.E.; Kelvin, A.A.; Pezacki, J.P. miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses 2024, 16, 1844.
  43. Agnello, L.; Gambino, C.M.; Ciaccio, A.M.; Masucci, A.; Vassallo, R.; Tamburello, M.; Scazzone, C.; Lo Sasso, B.; Ciaccio, M. Molecular Biomarkers of Neurodegenerative Disorders: A Practical Guide to Their Appropriate Use and Interpretation in Clinical Practice. Int. J. Mol. Sci. 2024, 25, 4323.
  44. Cappelletti, G.; Carsana, E.V.; Lunghi, G.; Breviario, S.; Vanetti, C.; Di Fonzo, A.B.; Frattini, E.; Magni, M.; Zecchini, S.; Clerici, M.; et al. SARS-CoV-2 hampers dopamine production in iPSC-derived dopaminergic neurons. Exp. Mol. Pathol. 2023, 134, 104874.
  45. Wong, A.C.; Devason, A.S.; Umana, I.C.; Cox, T.O.; Dohnalová, L.; Litichevskiy, L.; Perla, J.; Lundgren, P.; Etwebi, Z.; Izzo, L.T.; et al. Serotonin reduction in post-acute sequelae of viral infection. Cell 2023, 186, 4851–4867.e20.
  46. Chen, Y.; Yu, Y. Tau and Neuroinflammation in Alzheimer’s Disease: Interplay Mechanisms and Clinical Translation. J. Neuroinflamm. 2023, 20, 165.
  47. Rahman, M.R.; Akter, R.; Neelotpol, S.; Mayesha, I.I.; Afrose, A. The Neuropathological Impacts of COVID-19: Challenges and Alternative Treatment Options for Alzheimer’s-Like Brain Changes in Severely SARS-CoV-2 Infected Patients. Am. J. Alzheimers Dis. Other Demen. 2023, 38, 15333175231214974.
  48. Sharan, P.; Vellapandian, C. Hypothalamic–Pituitary–Adrenal (HPA) Axis: Unveiling the Potential Mechanisms Involved in Stress-Induced Alzheimer’s Disease and Depression. Cureus 2024, 16, e67595.
  49. Mayer, C.; Riera-Ponsati, L.; Kauppinen, S.; Klitgaard, H.; Erler, J.T.; Hansen, S.N. Targeting the NRF2 Pathway for Disease Modification in Neurodegenerative Diseases: Mechanisms and Therapeutic Implications. Front. Pharmacol. 2024, 15, 1437939.
  50. Brandes, M.S.; Gray, N.E. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. Ther. Adv. Neurol. Disord. 2020, 13, 1759091419899782.
  51. Ganesh, R.; Yadav, S.; Hurt, R.T.; Mueller, M.R.; Aakre, C.A.; Gilman, E.A.; Grach, S.L.; Overgaard, J.; Snyder, M.R.; Collins, N.M.; et al. Pro Inflammatory Cytokines Profiles of Patients with Long COVID Differ Between Variant Epochs. J. Prim. Care Community Health 2024, 15, 21501319241254751.
  52. Green, R.; Mayilsamy, K.; McGill, A.R.; Martinez, T.E.; Chandran, B.; Blair, L.J.; Bickford, P.C.; Mohapatra, S.S. SARS-CoV-2 Infection Increases the Gene Expression Profile for Alzheimer’s Disease Risk. Mol. Ther. Methods Clin. Dev. 2022, 27, 217–229.
  53. Zhang, H.; Shao, L.; Lin, Z.; Long, H.; Zhang, X.; He, X.; Ma, S.; Wang, Y.; Deng, H.; Chen, J.; et al. APOE Interacts with ACE2 Inhibiting SARS-CoV-2 Cellular Entry and Inflammation in COVID-19 Patients. Signal Transduct. Target. Ther. 2022, 7, 261.
  54. Angriman, F.; Ferreyro, B.L.; Burry, L.; Fan, E.; Ferguson, N.D.; Husain, S.; Keshavjee, S.H.; Lupia, E.; Munshi, L.; Renzi, S.; et al. Interleukin-6 Receptor Blockade in Patients with COVID-19: Placing Clinical Trials into Context. Lancet Respir. Med. 2021, 9, 655–664.
  55. Mohd Zawawi, Z.; Kalyanasundram, J.; Mohd Zain, R.; Thayan, R.; Basri, D.F.; Yap, W.B. Prospective Roles of Tumor Necrosis Factor-Alpha (TNF-α) in COVID-19: Prognosis, Therapeutic and Management. Int. J. Mol. Sci. 2023, 24, 6142.
  56. Saleh, H.A.; Yousef, M.H.; Abdelnaser, A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front. Immunol. 2021, 12, 606069.
  57. Jamwal, S.; Blackburn, J.K.; Elsworth, J.D. PPARγ/PGC1α Signaling as a Potential Therapeutic Target for Mitochondrial Biogenesis in Neurodegenerative Disorders. Pharmacol. Ther. 2021, 219, 107705.
  58. Li, Z.Q.; Lin, H.S.; Huang, X.P.; Zhang, S.Q.; Shu, X.; Wu, X.N. Research Progress on the Role of PGC1α in Mitochondrial Dysfunction Associated with Alzheimer’s Disease. Ageing Neur. Dis. 2023, 3, 14.
  59. Coman, A.E.; Ceasovschih, A.; Petroaie, A.D.; Popa, E.; Lionte, C.; Bologa, C.; Haliga, R.E.; Cosmescu, A.; Slănină, A.M.; Bacușcă, A.I.; et al. The Significance of Low Magnesium Levels in COVID-19 Patients. Medicina 2023, 59, 279.
More
Upload a video for this entry
Information
Subjects: Neurosciences
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 283
Entry Collection: COVID-19
Revisions: 2 times (View History)
Update Date: 30 May 2025
Academic Video Service